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Abstract—In context of commercial applications, robustness
of a Speaker Identification (SI) system is adversely effected by
short utterances. Performance of SI systems fairly depends upon
extracted feature sets. This paper investigates the effect of various
feature extraction techniques on performance of i-vectors and x-
vectors based Urdu speakers’ identification models. The scope of
this paper is restricted to text independent speaker identification
for short utterances (up to 4 seconds). SI systems demand for
a large data covering sufficient inter-speaker and intra-speaker
variability. Available Urdu speech corpus is used to measure
performance of various feature sets on SI systems. A minimum
percentage Equal Error Rate (%EER) of 0.113 is achieved using
x-vectors with Linear Frequency Cepstral Coefficients (LFCCs)
feature set.

Index Terms—speaker identification, deep neural networks,
speaker embeddings, i-vector

I. INTRODUCTION

Speaker Identification (SI) is the task of identifying a per-
son, based on given speech signal and enrolled speaker record
[1]. If the lexical content of the utterance is fixed to some
phrase, the task is considered as text-dependent, otherwise it
is text-independent. Speaker identification is widely applied
for speaker surveillance, forensics, multi-speaker tracking and
speaker authentication [2]. Introduction of subspace modeling
techniques such as Joint Factor Analysis (JFA) [3] and i-
vector [4] has made tremendous progress in the field of
text-independent speaker identification [5]. With increasing
trend of commercialization, many applications require very
good accuracy even with short duration utterances. However,
the performance of JFA and i-vector degrades with short
utterances of about 5-10 seconds [6].

I-vector is the widely used speaker modeling technique for
speaker identification systems. It consists of a pipeline of gen-
erative models, trained on independent subtasks: a Universal
Background Model (UBM), a total variability matrix (T) to
extract i-vetcors and PLDA [7] backend to compute similarity
score between i-vectors [4] [8]–[12]. UBM, a Gaussian Mix-
ture Model (GMM), is trained using very large data to collect
sufficient statistics for training of i-vector extractor. UBM is
mostly trained using iterative Expectation-Maximization (EM)
algorithm.

Recently, Deep Neural Network (DNN) based end-to-end
speaker identification is introduced that learns speakers’ em-
beddings [13]. In order to make all segments of same length,
Snyder et al. [14] introduced a temporal pooling layer in
network for length normalization. The work in [15] splits
this end-to-end training into two parts such as a DNN to
produce embeddings and a separately trained classifier to
compare these embeddings. This facilitates the use of all the
accumulated backend technology developed over the years for
i-vectors, such as length-normalization, PLDA scoring, and
domain adaptation techniques.

In addition to the speaker modeling techniques, feature
extraction plays vital role in speaker identification process
since accuracy of the system fairly depends upon selection
of the acoustic characteristics that maximize discrimination
between the speakers. Mel Frequency Cepstral Coefficents
(MFCC) [16], Linear Frequency Cepstral Coefficents (LFCC),
Gammatone Frequency Cepstral Coefficents (GFCC) [17],
filter bank (fBank) [18] coefficients and Perceptual Linear
Predictive (PLP) [19] are the widely used feature extraction
techniques for SI systems. In this paper, comparative analysis
of these feature sets on speaker modeling is performed. UBM
based i-vectors and state-of-the-art DNN based x-vectors are
used for speaker modeling.

Rest of the paper is organized as follows: Section II briefly
describes the components of a SI system, Section III explains
the data set used for training, enrollment and evaluation of
SI systems. Experimental setup is described in Section IV
and Section V depicts results of i-vectors and x-vectors with
various feature sets.

II. SPEAKER IDENTIFICATION SYSTEM

A speaker identification system consists of three basic
components that include feature extraction, speaker modeling
and scoring trials which is shown in Figure. 1.

A. Feature extraction

MFCCs are the widely used features in most of the speech
processing applications such as speech recognition [20], lan-
guage identification [21] and speaker identification [22]. Key
steps involved in MFCCs extraction are shown in Figure 2.

In addition to MFCC features, Mel filter-banks features are
also used in current work. Mel filter-banks are the array of pass978-1-7281-2449-0/19/$31.00 ©2019 IEEE



Fig. 1. Components of i-vector and x-vector based SI system

Fig. 2. Flow of MFCC extraction

band filters that separates an input acoustic signal into multiple
components [18]. The key difference between MFCC features
and Mel filter-bank features is the truncation.

Mel filter bank focuses on lower frequencies region as
compared to the higher ones. However, based on speech
production theory, speaker characteristics are more prominent
in higher frequency region of speech [23]. Linear filter bank
emphasizes all frequencies equally. This insight motivates to
investigate performance of LFCCs for speaker recognition.

GFCC features are another type of acoustic features used
for speaker identification system. Extraction of GFCC is just
similar to calculating MFCCs except the bandwidths of filter
banks applied for frequency wrapping. GFCCs are extracted
after applying Gammatone Filter (GF) bank for frequency
wraping. GF is a linear filter described by an impulse response
which is the product of a sinusoidal and a gamma distribution.

PLP is another widely used acoustic feature extraction tech-
nique [19]. Power spectrum from speech signal is computed
and bark filter bank is applied. These filter banks are weighted
by equal-loudness pre-emphasis weights to simulate hearings
sensitivity. A linear prediction is applied to wrapped spectrum
to predict coefficients of a signal that has this wrapped
spectrum as a power spectrum. Finally, cepstral coefficients
are obtained from these linear predicted coefficients.

B. Speaker modeling

1) I-vector: Joint Factor Analysis (JFA) [3] based SI sys-
tems are outperformed by i-vector. JFA separates a Gaussian
supervector as a sum of speaker and channel supervectors.
However, studies show that channel factors also have speaker
information [24]. This problem motivated the introduction of
i-vector that maps both speaker and channel variability into
same low-dimensional space. A supervector M of a certain
utterance can be split as;

M = m+ Tw (1)

where m is the vector of speaker independent components,
T is the total variability matrix and w is known as i-vector.
Once sufficient parameters given in Equation 1 are learned,
i-vector for an input utterance can be extracted. A UBM is
used to collect sufficient statistics to train i-vector extractor.
Different number of mixtures with various i-vector dimensions
are experimented to optimize i-vector performance.

2) X-vectors: X-vector is state-of-the-art speaker modeling
technique which is based on DNN speaker embeddings [15].
These embeddings are extracted from a feed forward deep
neural network. Network is consisted of some initial frame-
level layers, a statistics pooling layer and a few segment-
level layers. Statistic pooling layer aggregates frame-level
representations and calculates its mean and standard deviation.
These segment-level statistics are concatenated together and
passed to segment-level hidden layers. Embeddings can be
extracted from these layers. In this paper, x-vector system
described in [25] is investigated using various feature sets.

C. Scoring

PLDA [7] is used to score similarity between two i-vectors
or x-vectors. Since vectors are modeled by a factor analyzer
in PLDA, it outperforms conventional cosine distance scoring



[26]. Dimmenisionality reduction is done using Linear Dis-
criminant Analysis (LDA) [15]. PLDA model is trained using
large in-domain data.

III. DATA SET

For development and evaluation of speaker identification
system, a speech corpus collected for Urdu LVCSR [20] is
used. Most of the speakers are recorded in multiple sessions
hence covering the session variability. Data is recorded from
male and female Punjabi and Urdu speakers from age group
ranging between 18-50 years. All audios are recorded on a
sampling rate of 16KHz using USB microphone, USB head-
sets, hands-free and laptop microphone. Data is recorded in
indoor environment. Each speaker is asked to record sentences
from Urdu text corpus discussed in [20]. Speech corpus is
split into train, enrollment and test sets. Train set consists
of 1575 speakers and is used to train UBM and PLDA. For
enrollment and test sets, speech corpus from 300 speakers is
selected. Enrollment and test data sets are restricted to speech
duration of 4 minutes and 1 minute per speaker respectively.
Additionally, each utterance in both sets is less than 4 seconds.
Details about speakers and utterances duration are shown in
Table I.

TABLE I
SPEAKERS’ DETAILS

Train Enrollment Test
No. of speakers 1575 300 300

Shortest utterance (s) 1.02 1.30 1.39
Longest utterance (s) 34.75 3.99 3.99

Mean duration (s) 5.07 3.26 3.35
Total utterances 198594 13156 5523

Total duration per speaker (s) 6401 240 60

IV. EXPERIMENTAL SETUP

Different feature extraction techniques are used to study
effect of various feature sets on speaker identification system.
Performance of i-vector and x-vectors are compared using
MFCCs, LFCCs, GFCCs, fBanks and PLP features. Features
are extracted using a 25ms hamming window with a shift of
10ms. 13 coefficients are calculated for all feature extraction
technique except filter banks where 24 filter banks are applied.
A Linear Predictive Coding (LPC) filter of order 12 is used for
PLP extraction. Summary of feature sets is given in Table II
. These features are used to train UBM, i-vector and x-vector
extractors.

To train i-vector extractor, a full covariance GMM model
(UBM) is trained using train set. Performance of speaker iden-
tification system varies with number of mixtures in UBM and
dimensionality of i-vector. Various combinations of Gaussian
mixtures and i-vector dimensions are investigated to optimize
the performance. PLDA scores of test trials are evaluated
for each combination and the best %EER is reported for
comparison.

1Average duration per speaker in train set

TABLE II
NUMBER OF COEFFICIENTS CALCULATED FOR DIFFERENT FEATURE SETS

Feature type No. of coefficients
MFCC 13
LFCC 13
GFCC 13
fBank 24
PLP 13

For proper training of x-vectors, sufficient duration of each
speaker and utterance length is required. So, all utterances with
less than 5 seconds and speakers with less than 8 utterances
are discarded from train set for x-vector extractor training.
For neural network training, different cell dimensions are
investigated with a 6-layers network proposed by [25]. First
5 layers are frame level with time-delay architecture. Next
layer is statistics pooling layer followed by two segment level
layers. Final layer is a softmax output layer.

Different combinations of Gaussian mixtures in UBM and
i-vector dimensionality are investigated to optimize the i-
vector performance. Best configuration with 128 Gaussian
mixtures in UBM and i-vector of dimension 600 is selected
to compare performance of various feature sets. Similarly,
for x-vectors extraction, various combinations of number of
neurons in hidden layer, static pooling layer and number of
epochs are experimented to achieve the optimal accuracy. Best
configuration with 1024 neurons in each layer and 14 training
epochs is used to compare performance of features sets. Kaldi
speech recognition toolkit [27] is used for speaker modeling.

Equal Error Rate (EER) is the widely quoted measure
to evaluate performance of a SI system. False acceptances
and false rejections are calculated defining a threshold for
trials’ scores. EER is the value where False Rejection Rate
(FRR) and False Acceptance Rate (FAR) becomes equal for
given threshold. In speaker identification evaluations, trade-off
between false alarms and missed speakers has always been an
important diagnostic tool [28]. NIST has defined Detection
Cost Function (DCF) and Detection Error Tradeoff (DET)
[29] curves as a diagnostic measure. DCF is the weighted
sum of probabilities of missed speakers and false alarms. DCF
and EER are calculated on a certain threshold. But a single
performance number is inadequate to represent capabilities of
a system with multiple operating points. SI systems have many
operating points and best can be observed by a performance
curve. It can easily be visualized plotting a DET curve.

V. RESULTS

Performance of i-vectors with various feature sets is shown
in Table III in terms of Equal Error Rate (%EER) and mini-
mum DCF at PTarget = 0.01. Figure 3 shows the DET curve
comparing the performance of i-vectors with all investigated
feature sets. Curve illustrates that LFCCs perform slightly
better than other feature extraction techniques. It overlaps with
MFCCs for some region.

Best configuration of x-vectors is experimented with dif-
ferent feature extraction techniques. Percent equal error rate



Fig. 3. DET curve comparing various feature sets for i-vectors

TABLE III
COMPARISON OF DIFFERENT FEATURE TYPES ON BEST I-VECTOR

CONFIGURATION

DCF% EERFeature type
0.0510.914MFCC
0.0390.701LFCC
0.0811.167GFCC
0.1021.449fBank
0.0671.209PLP

is shown in Table IV and DET curve is shown in Figure 4.
DET curve shows that LFCCs perform far better than all other
feature extraction techniques for all operating points.

TABLE IV
COMPARISON OF DIFFERENT FEATURE TYPES ON BEST X-VECTOR

CONFIGURATION

DCF% EERFeature type
0.0410.739MFCC
0.0040.113LFCC
0.0370.653GFCC
0.0530.943fBank
0.0370.653PLP

It is evident from experimental results that x-vectors out-
perform i-vectors using LFCCs which is in accordance with
theoretical explanation of LFCCs covering all frequency re-
gions equally.

VI. CONCLUSION

This paper presents the effect of different acoustic feature
extraction techniques on state-of-the-art speaker embeddings
extracted from neural networks to discriminate between dif-
ferent speakers. Urdu speech corpus collected from Pakistani

Fig. 4. DET curve comparing various feature sets for x-vectors

speakers is used to evaluate and compare different SI sys- 
tems. This work is restricted to compare text independent 
SI systems’ performances on short duration utterances up to 
4 seconds. Experiments show that state-of-the-art x-vectors 
outperform i-vectors. A minimum %EER of 0.113 is achieved 
using LFCCs which outperformed the other investigated fea- 
ture sets such as GFCCs, MFCCs, fBank cepstral coefficients
and PLP.
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